RFPS Calculation Policy

Name of Policy	RFPS Calculation Policy	
Policy Level (Trust/School)	School	
Document control	Revision Amendment Details	By whom
Date	Review and internal consultation	Mathematics Lead
Sept 2022	Approved	Head Teacher
March 2023	Proposed date for review	Mathematics Lead
March 2026		

Primary School

Table of Contents

1. Introduction and Rationale 3
2. Aims 3
3. Teachers - How to use this policy 3
4. Parents/Carers - How to use this policy 3
5. Vocabulary 4
Key Stage 1 5
Lower Key Stage 2 10
Upper Key Stage 2 15

1. Introduction and Rationale

This calculation policy sets out expectations for the mastery of addition, subtraction, multiplication and division as written in the National Curriculum 2014 as well as the progression of concrete, pictorial and abstract methods used at Rugby Free Primary School.

It is vital that pupils are taught according to the stage at which they are currently working, being moved onto the next stage as soon as they are ready, or working at a lower stage until they are secure enough to move on. Children should not be discouraged from using previously taught methods in which they are secure while new concepts are becoming embedded.

The long-term aim is for children to be able to select an efficient method that is appropriate for a given task. They should do this by always asking themselves:

- 'Can I do this in my head?'
- 'Can I do this in my head using equipment or drawings?'
- 'Do I need to use a written method and, if so, which one would be most efficient?'

It is important that calculations are given a real life context or problem solving approach where possible to help build children's understanding of the purpose of calculation and to help them recognise when to use certain operations and methods when faced with problems.

2. Aims

- To ensure consistency and progression in our approach to calculation.
- To ensure that children develop efficient and reliable mental and written methods of calculation for all operations.
- To ensure that children have mastery of these methods, using them accurately and appropriately with confidence and understanding.
- To ensure that all adults, including parents/carers, are able to support children in an effective and coherent manner.

3. Teachers - How to use this policy

- Use this policy as the basis of your planning but ensure you use the previous or following year's guidance to allow for personalised learning.
- Always use assessment for learning to identify suitable next steps in calculation for groups of children.
- Always use suitable resources, models and images to support children's understanding of calculation, as appropriate.
- If, at any time, children are making significant errors, return to the previous stage in calculation/ or previous resources.

4. Parents/Carers - How to use this policy

- When supporting your child with a particular calculation, use the policy to identify with your child the method which they are most familiar with. Children should choose the method that they feel is most suited to the task.

Rugby Free
Primary School

- Use suitable resources, models and images to support children's understanding of calculation, as appropriate (e.g. counters, number lines etc.)
- If, at any time, your child is making significant errors, try returning to the previous stage in calculation and/or previous resources.

5. Vocabulary

The following key vocabulary in the tables below should be used age appropriately. Please note:

- 'Sum' should only be used to refer to addition calculations, and not used in a more general sense, e.g. 'lets do these sums' when referring to other operations like subtraction, multiplication or division.
- When transferring ones, tens and hundreds, etc. from one place value column to another when using the column method for addition or subtraction, this should be referred to as 'moving' rather than 'carrying', 'borrowing', or 'exchanging'. 'Exchanging' should be used to show that an exchange is made and then the amount is 'moved' to the next column.
- We should not always use the term 'equals'. It is useful to sometimes use the terminology 'is the same as' to clarify the meaning of the symbol. E.g. when reading aloud $3+3=6$, you could say'three plus three is the same as six'.

Addition

Add, addition, more, plus, increase, jump forward, count on, sum, total, altogether, get some more, tens, units, hundreds, thousands, place value, digit, value, combine, total, score, double, near double, how many more to make....?, equals, sign, inverse.

Multiplication

Lots of, groups of, times, product, multiply, multiplied by, multiple of, once, twice, three times... ten times, repeated addition, array, double, inverse.

Subtraction

Subtract, take away, minus, decrease, leave, jump back, count back, how many are left/left over? Difference between, half, halve, how many more/fewer is..... than....?, how much more/less is....?, equals, inverse.

Division

Divide, share, share equally, halve, one each, two each, three each...., group in pairs, threes....tens, equal groups of, divide, divided by, divided into, divisible by, remainder, factor, quotient, inverse.

Key Stage 1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

Add 2 digit numbers using Dienes, place value counters, Numicon or toher physical manipulatives.

Adding 1 and 2 digit numbers to 100 using number lines
$m m n$

Show the concrete through a representation of exchanging ones to tens before moving into the correct column.

Model the column method alongside the pictorial.

38

$+23$
61
$7-3=4$
$7-4=3$
I know that 3 and 4 make 7 , so if I subtract 3 from 7, I should have 4.

Rugby Free
Primary School

"LUDIS STUDIIP"

Multiplication | Using practical |
| :--- |
| activities and |
| manipulatives |
| for doubling. |
| Doubling with Dienes is very effective. |
| Eake equal groups and count the total. |

Rugby Free
Primary School
Arrays using counters, cubes Numicon etc.

Primary School
' 4 UDIS STUDIIS'

Lower Key Stage 2

	Concrete	Pictorial	Abstract
Addition	Using concrete place value equipment to represent the calculation.	As in concrete, represent this, circling and moving to show exchanges.	$\begin{array}{r} 264+164=429 \\ 265 \\ +164 \\ \hline 429 \\ \hline 1 \end{array}$

Primary School

	 Blank counters may also be used on a place value grid to physically exchange and move．		$\begin{array}{r} 1378 \\ +2148 \\ \hline 3526 \\ \hline 11 \end{array}$
Subtraction	Use equipment to enact the exchange of 1 hundred for 10 tens，and 1 ten for 10 ones． 目 䁗 盯 昌昌昌昌 Both place value counters and dienes are effective in modelling and practicing subtraction and exchanging．	Represent pictorially． I need to subtract 8 ones，so I will exchange a ten for 10 ones．I will move that ten to the ones column．	$\begin{array}{r} 3137 \\ 4357 \\ -\quad 2735 \\ \hline 1622 \\ \hline \end{array}$

Primary School

Primary School

Upper Key Stage 2

Primary School

Primary School

Multiplication	Multiplying 4 digit numbers by 1 digit						T		H	T	O
	-5	Use the concrete re visually representing a		to mo	e onto		1		8	2	6
	- $\quad \times \infty \times 0$ (1)					\times					3
	- $\times \times \times \infty$						5		4	7	8
	- $-\gg$						2			1	
	Multiplying 2 digit numbers by 2 digits.										
	Place concrete						H	T	0		
	(-) (0) (0) resources in an area	The grid method links into the area model	\times	20	2	\times		2	2 1		
	support	well. Use this before	30	600	60			2	2		
	(-) $\bigcirc \bigcirc$ ($)$ understanding.	using formal method.	1	20	2		6	6	0		
		the calculation.					6	8	2		
	Multiply 3 digits by 2 digits.										

Primary School

"KUDIS STUDIS"

